DCB, NFS, pNFS and VN2VN

Members of SNIA’s Ethernet Storage Forum discuss data center bridging, file sharing protocols and Fibre Channel over Ethernet.

  • 11 years ago Posted in

How DCB makes iSCSI better


By Allen Ordoubadian,
SNIA ESF Marketing Chair, Emulex

 


A CHALLENGE with traditional iSCSI deployments is the non-deterministic nature of Ethernet networks. When Ethernet networks only carried non-storage traffic, lost data packets where not
a big issue as they would get retransmitted.

However; as we layered storage traffic over Ethernet, lost data packets became a “no no” as storage traffic is not as forgiving as non-storage traffic and data retransmissions introduced I/O delays, which are unacceptable to storage traffic. In addition, traditional Ethernet also had no mechanism to assign priorities to classes of I/O. Therefore a new solution was needed. Short of creating a separate Ethernet network to handle iSCSI storage traffic, Data Center Bridging (DCB), was that solution.

The DCB standard is a key enabler of effectively deploying iSCSI over Ethernet infrastructure. The standard provides the framework for high-performance iSCSI deployments with key capabilities that include:
£ Priority Flow Control (PFC) - enables “lossless Ethernet”, a
consistent stream of data between servers and storage arrays. It
basically prevents dropped frames and maximizes network
efficiency. PFC also helps to optimize SCSI communication and
minimizes the effects of TCP to make the iSCSI flow more reliably.
£ Quality of Service (QoS) and Enhanced Transmission Selection
(ETS) - support protocol priorities and allocation of bandwidth for
iSCSI and IP traffic.
£ Data Center Bridging Capabilities eXchange (DCBX) - enables
automatic network-based configuration of key network and iSCSI
parameters.

With DCB, iSCSI traffic is more balanced over high-bandwidth 10GbE links. From an investment protection perspective, the ability to support iSCSI and LAN IP traffic over a common network makes it possible to consolidate iSCSI storage area networks with traditional IP LAN traffic networks. There is also another key component needed for iSCSI over DCB. This component is part of Data Center Bridging eXchange (DCBx) standard, and it’s called TCP Application Type-Length-Value, or simply “TLV”! TLV allows the DCB infrastructure to apply unique ETS and PFC settings to specific sub-segments of the TCP/IP traffic.

This is done through switches that can identify the sub-segments based on the TCP socket or port identifier that are included in the TCP/IP frame. In short, TLV directs servers to place iSCSI traffic on available PFC queues that separates storage traffic from other IP traffic. PFC also eliminates data retransmission and supports a consistent data flow with low latency. IT administrators can leverage QoS and ETS to assign bandwidth and priority for iSCSI storage traffic, which is crucial to support critical applications. Therefore, depending on your overall datacenter environment, running iSCSI over DCB can improve performance by insuring a consistent stream of data, resulting in “deterministic performance” and the elimination of packet loss that can cause high latency; quality of service through allocation of bandwidth per protocol for better control of service levels within a converged network and network convergence.

For more information on this topic or technologies discussed in this blog, please visit www.snia.org/forums/esf


Why NFSv4.1 & pNFS are better than NFSv3 could
ever be

 

By Alex McDonald,
SNIA ESF Chair - File Protocols, NetApp

 


NFSv4 has been a standard file sharing protocol since 2003, but has not been widely adopted; party because NFSv3 was “just good enough”. Yet, NFSv4 improves on NFSv3 in many important ways; and NFSv4.1 is a further improvement on that. In this post, I explain the how NFSv4.1 is better suited to a wide range of datacenter and HPC use than its predecessor NFSv3 and NFSv4, as well as providing resources for migrating from NFSv3 to NFSv4.1. And, most importantly, I make the argument that users should, at the very least, be evaluating and deploying NFSv4.1 for use in new projects; and ideally, should be using it wholesale in their existing environments.

The background to NFSv4.1
NFSv2 (specified in RFC-1813, but never an Internet standard) and its popular successor NFSv3 was first released in 1995 by Sun. NFSv3 has proved a popular and robust protocol over the 15 years it has been in use, and with wide adoption it soon eclipsed some of the early competitive UNIX-based filesystem protocols such as DFS and AFS; NFSv3 was extensively adopted by storage vendors and OS implementers beyond Sun’s Solaris; it was available on an extensive list of systems, including IBM’s AIX, HP’s HP-UX, Linux and FreeBSD. Even non-UNIX systems adopted NFSv3; Mac OS, OpenVMS, Microsoft Windows, Novell NetWare, and IBM’s AS/400 systems. In recognition of the advantages of interoperability and standardization, Sun relinquished control of future NFS standards work, and work leading to NFSv4 was by agreement between Sun and the Internet Society (ISOC), and is undertaken under the auspices of the Internet Engineering Task Force (IETF).

In April 2003, the Network File System (NFS) version 4 Protocol was ratified as an Internet standard, described in RFC-3530, which superseded NFSv3. This was the first open filesystem and networking protocol from the IETF. NFSv4 introduces the concept of state to ameliorate some of the less desirable features of NFSv3, and other enhancements to improved usability, management and performance.
But shortly following its release, an Internet draft written by Garth Gibson and Peter Corbett outlined several problems with NFSv4; specifically, that of limited bandwidth and scalability, since NFSv4 like NFSv3 requires that access is to a single server. NFSv4.1 (as described in RFC-5661, ratified in January 2010) was developed to overcome these limitations, and new features such as parallel NFS (pNFS) were standardized to address these issues.

Now NFSv4.2 is now moving towards ratification. In a change to the original IETF NFSv4 development work, where each revision took a significant amount of time to develop and ratify, the workgroup charter was modified to ensure that there would be no large standards documents that took years to develop, such as RFC-5661, and that additions to the standard would be an on-going yearly process. With these changes in the processes leading to standardization, features that will be ratified in NFSv4.2 (expected in early 2013) are available from many vendors and suppliers now.

Adoption of NFSv4.1
Every so often, I, and others in the industry, run Birds-of-a-Feather (BoFs) on the availability of NFSv4.1 clients and servers, and on the adoption of NFSv4.1 and pNFS. At our latest BoF at LISA ’12 in San Diego in December 2012, many of the attendees agreed; it’s time to move to NFSv4.1.

While there have been many advances and improvements to NFS, many users have elected to continue with NFSv3. NFSv4.1 is a mature and stable protocol with many advantages in its own right over its predecessors NFSv3 and NFSv2, yet adoption remains slow. Adequate for some purposes, NFSv3 is a familiar and well-understood protocol; but with the demands being placed on storage by exponentially increasing data and compute growth, NFSv3 has become increasingly difficult to deploy and manage. In essence, NFSv3 suffers from problems associated with statelessness. While some protocols such as HTTP and other RESTful APIs see benefit from not associating state with transactions – it considerably simplifies application development if no transaction from client to server depends on another transaction – in the NFS case, statelessness has led, amongst other downsides, to performance and lock management issues.

NFSv4.1 and parallel NFS (pNFS) address well-known NFSv3 “workarounds” that are used to obtain high bandwidth access; users that employ (usually very complicated) NFSv3 automounter maps and modify them to manage load balancing should find pNFS provides comparable performance that is significantly easier to manage.

So what’s the problem with NFSv3?
Extending the use of NFS across the WAN is difficult with NFSv3. Firewalls typically filter traffic based on well-known port numbers, but if the NFSv3 client is inside a firewalled network, and the server is outside the network, the firewall needs to know what ports the portmapper, mountd and nfsd servers are listening on. As a result of this promiscuous use of ports, the multiplicity of “moving parts” and a justifiable wariness on the part of network administrators to punch random holes through firewalls, NFSv3 is not practical to use in a WAN environment. By contrast, NFSv4 integrates many of these functions, and mandates that all traffic (now exclusively TCP) uses the single well-known port 2049.

Plus, NFSv3 is very chatty for WAN usage; and there may be many messages sent between the client and the server to undertake simple activities, such as finding, opening, reading and closing a file. NFSv4 can compound these operations into a single RPC (Remote Procedure Call) and reduce considerably the back-and-forth traffic across the network. The end result is reduced latency. One of the most annoying NFSv3 “features” has been its handling of locks. Although NFSv3 is stateless, the essential addition of lock management (NLM) to prevent file corruption by competing clients means NFSv3 application recovery is slowed considerably. Very often stale locks have to be manually released, and the lock management is handled external to the protocol. NFSv4’s built-in lock leasing, lock timeouts, and client-server negotiation on recovery simplifies management considerably.

In a change from NFSv3, these locking and delegation features make NFSv4 stateful, but the simplicity of the original design is retained through well-defined recovery semantics in the face of client and server failures and network partitions. These are just some of the benefits that make NFSv4.1 desirable as a modern datacenter protocol, and for use in HPC, database and highly virtualized applications. NFSv3 is extremely difficult to parallelise, and often takes some vendor-specific “pixie dust” to accomplish. In contrast, pNFS with NFSv4.1brings parallelization directly into the protocol; it allows many streams of data to multiple servers simultaneously, and it supports files as per usual, along with block and object support through an extensible layout mechanism. The management is definitely easier, as NFSv3 automounter maps and hand-created load-balancing schemes are eliminated and, by providing a standardized interface, pNFS ensures fewer issues in supporting multi-vendor NFS server environments.

For more information about the Ethernet Storage Forum and
what the File Protocols Special Interest Group is up to, please visit: www.snia.or/forums/esf


VN2VN: “Ethernet only”
FCoE is coming

 

By David Fair,
ESF Business Development Chair, Intel

 

THE COMPLETION of a specification for FCoE (T11 FC-BB-5, 2009) held great promise for unifying storage and LAN over a unified Ethernet network, and now we are seeing the benefits. With FCoE, Fibre Channel protocol frames are encapsulated in Ethernet packets. To achieve the high reliability and “lossless” characteristics of Fibre Channel, Ethernet itself has been enhanced by a series of IEEE 802.1 specifications collectively known as Data Center Bridging (DCB). DCB is now widely supported in enterprise-class Ethernet switches. Several major switch vendors also support the capability known as Fibre Channel Forwarding (FCF) which can de-encapsulate /encapsulate the Fibre Channel protocol frames to allow, among other things, the support of legacy Fibre Channel SANs from a FCoE host.
The benefits of unifying your network with FCoE can be significant, in the range of 20-50% total cost of ownership depending on the details of the deployment. This is significant enough to start the ramp of FCoE, as SAN administrators have seen the benefits and successful Proof of Concepts have shown reliability and delivered performance. However, the economic benefits of FCoE can be even greater than that. And that’s where VN2VN — as defined in the final draft T11 FC-BB-6 specification — comes in. This spec completed final balloting in January 2013 and is expected to be published this year. The code has been incorporated in the Open FCoE code (www.open-fcoe.org).

“VN2VN” refers to Virtual N_Port to Virtual N_Port in T11-speak. But the concept is simply “Ethernet Only” FCoE. It allows discovery and communication between peer FCoE nodes without the existence or dependency of a legacy FCoE SAN fabric (FCF). The Fibre Channel protocol frames remain encapsulated in Ethernet packets from host to storage target and storage target to host. The only switch requirement for functionality is support for DCB. FCF-capable switches and their associated licensing fees are expensive. A VN2VN deployment of FCoE could save 50-70% relative to the cost of an equivalent Fibre Channel storage network. It’s these compelling potential cost savings that make VN2VN interesting. VN2VN could significantly accelerate the ramp of FCoE. SAN admins are famously conservative, but cost savings this large are hard to ignore.
An optional feature of FCoE is security support through Fibre Channel over Ethernet (FCoE) Initialization Protocol (FIP) snooping. FIP snooping, a switch function, can establish firewall filters that prevent unauthorized network access by unknown or unexpected virtual N_Ports transmitting FCoE traffic. In BB-5 FCoE, this requires FCF capabilities in the switch. Another benefit of VN2VN is that it can provide the security of FIP snooping, again without the requirement of an FCF. Technically what VN2VN brings to the party is new T-11 FIP discovery process that enables two peer FCoE nodes, say host and storage target, to discover each other and establish a virtual link. As part of this new process of discovery they work cooperatively to determine unique FC_IDs for each other. This is in contrast to the BB-5 method where nodes need to discover and login to an FCF to be assigned FC_IDs. A VN2VN node can login to a peer node and establish a logical point-to-point link with standard fabric login (FLOGI) and port login (PLOGI) exchanges.

VN2VN also has the potential to bring the power of Fibre Channel protocols to new deployment models, most exciting, disaggregated storage. With VN2VN, a rack of diskless servers could access a shared storage target with very high efficiency and reliability. Think of this as “L2 DAS,” the immediacy of Direct Attached Storage over an L2 Ethernet network. But storage is disaggregated from the servers and can be managed and serviced on a much more scalable model. The future of VN2VN is bright.

For more information about SNIA’s Ethernet Storage Forum, please visit: www.snia.org/forums/esf